安防之家讯:1 引言
生产过程故障基本可分两类[1]:一类是当故障发生后,过程系统由一个正常的稳定状态逐渐过渡到另一个非正常的稳定状态。如电站回热系统,当一台高压加热器因某根钢管破裂而导致给水泄漏时,由于对象本身的动态特性和控制系统的作用,机组将逐渐过渡到另一个稳定的状态,仍能维持运行;另一类是故障发生后,系统状态会逐渐恶化,直至崩溃。如电站锅炉发生水冷壁泄漏故障,如不及时处理,必然会导致机组运行逐渐恶化,直至炉膛熄火或机组迫停。上述两类故障的共同点是:当故障发生后,过程系统将经历一个由多个变量共同表现出来的特定的动态过程,直至系统重新稳定或崩溃。
生产过程的故障检测与诊断方法,基本上可分为基于对象机理模型的故障诊断和不依靠于对象模型的定性的故障诊断[2]。前者利用观测器或者滤波器对过程系统的状态和参数进行重构,并将模型输出与对象实际输出进行比较,形成残差序列,通过对残差序列的分析进行故障检测与诊断;后者实质上是一种典型故障模式的识别与匹配过程,其中包括故障诊断专家系统、故障树分析、人工神经网络方法等,这类诊断方法往往需要一些获取故障直接征兆的非凡传感检测装置。通常上述两类故障诊断方法,无论是残差序列分析,还是征兆信号匹配,都是根据某一时刻系统的状态进行故障检测与诊断,只有当故障发生到一定程度,系统状态与正常状态有着较大的偏差后,才能诊断出故障,因此存在故障检测与诊断的滞后性。
本文提出的生产过程早期故障检测与诊断方法,定性地利用了故障发生后系统中多个相关变量或征兆信息之间的解析冗余关系,将它们的动态趋势信息利用人工神经网络进行有效的融合,在一定程度上避免了上述常规故障诊断方法的缺点,减小了故障检测与诊断的滞后性,为运行人员争取了最多的故障处理时间和主动。
安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/