文[1]阐述了模拟试验的原理,文[2]具体介绍了模拟实验的安排以及从试验结果中得到的冲击接地电阻的雷电冲击特性。本文则在文[2]的基础上进一步研究了在雷电冲击电流作用下,不同接地装置冲击系数的特性,并通过对大量试验数据的回归分析,提出了计算不同形状的接地装置冲击系数的拟合公式,与文献中的现场试验结果进行了比较。1 各因素对接地装置冲击系数的影响作为冲击接地电阻与工频接地电阻的比值,接地装置的冲击系数反映的是冲击和工频作用时接地装置的综合散流特性。通过对大量的试验数据进行综合分析,可以得到冲击电流幅值、接地体的几何尺寸和土壤电阻率三个主要因素对接地装置冲击系数的影响规律。
图1所示为接地装置尺寸及土壤电阻率一定时,冲击系数α随冲击电流幅值Im的变化曲线。图中的曲线a,b,c,d,e,f分别表示铁塔、水泥杆环形、水泥杆放射型接地装置及从一端和中间施加冲击电流的水平接地体和单根垂直接地体,详细结构可参见文[2]。从图中可以看出,各接地装置的冲击系数随冲击电流幅值的变化规律与冲击接地电阻随冲击电流幅值的变化规律相同,即随冲击电流幅值的增加而减小,当冲击电流增加到一定值以后,减小的趋势变缓。ρ=4.076kΩm,其中a,b,c,e和f的l=26m;d的l=60m
图1 各种接地装置的冲击系数与冲击电流幅值的关系曲线图2给出了当冲击电流幅值及土壤电阻率一定时,各种结构接地装置的冲击系数随几何尺寸的变化曲线。接地体几何尺寸的增加导致冲击系数的增加,当几何尺寸较小时,冲击系数的增加速度较快,而几何尺寸增加到一定值以后,冲击系数的增加速度变慢。可以这样来理解这一变化趋势:当接地体长度增加到一定值以后,电感作用加强,使冲击接地电阻下降趋势减缓,下降速度低于其工频接地电阻下降速度,因此冲击系数随几何尺寸的增加而增加。ρ=1.031kΩm,Im=200kA
图2 各种接地装置的冲击系数与接地装置几何尺寸的关系曲线图3所示为冲击电流及接地装置的几何尺寸一定时,土壤电阻率对冲击系数的影响。由于冲击接地电阻随着土壤电阻率的增加而增加,但有一定的饱和趋势[2],而工频接地电阻随土壤电阻率的增加而线性增加,因此冲击系数随土壤电阻率变化而变化的规律与冲击接地电阻随电阻率变化的规律相反:随着土壤电阻率的增加,冲击系数减小。Im=100kA,其中a,b,c,e和f的l=26m;d的l=60m
图3 各种接地装置的冲击系数与土壤电阻率的关系曲线具体的变化趋势可以大致分为3个区域:
当土壤电阻率小于500Ωm时,土壤为良好土壤,在这个范围内,随着土壤电阻率的增加,冲击系数减小很快,基本呈线性关系;
土壤电阻率在500~3000Ωm的范围,土壤为不良土壤,导电性较差,在这个范围内,冲击系数随土壤电阻率的增加而减小的速度变慢,呈非线性关系;
当土壤电阻率大于3000Ωm时,土壤为极不良土壤,土壤的导电性很差,在这个范围内,随土壤电阻率的增加,冲击系数基本上呈线性关系减小,但减小的速度变得更慢,呈现饱和的趋势。2 拟合计算公式2.1 冲击系数的拟合计算公式冲击系数是反映输电线路杆塔接地装置冲击特性的一个重要参数,它可为防雷设计提供诸多方便。我们只要知道了接地装置的工频接地电阻,就可以根据冲击系数计算得到其冲击接地电阻。这样就解决了现场测量冲击接地电阻的困难,可用测量接地装置的工频接地电阻取代冲击接地电阻的测量。但是,现行的〈电力设备接地技术设计规程SDJ8-79〉[3]上所提供的冲击系数数据,对不同的接地装置不便于计算;另外有些数据是计算结果,需要通过试验予以验证。
输电线路杆塔接地装置的冲击接地电阻和冲击系数主要与冲击电流幅值、接地装置的几何尺寸及土壤电阻率有关。通过对大量的试验数据的回归拟合得到计算冲击系数的经验公式。回归分析时,先固定接地装置几何尺寸和土壤电阻率,将各组数据对冲击电流进行拟合,然后固定电阻率,将第一次拟合的系数拟合为几何尺寸的函数,最后将第二次的拟合系数对电阻率进行拟合。经验公式由三部分组成,分别反应了电阻率、几何尺寸及冲击电流幅值对冲击系数和冲击接地电阻的影响。拟合表明,冲击系数可由下式统一表示为α=αραlαI,
αρ=αρ-b,αl=c ,αI=d-exp(-fI-gm).式中,系数a,b,c,d,f,g为正实数。αρ,αl和αI分别反映了电阻率、几何尺寸和冲击电流幅值对冲击系数的影响;αρ为电阻率的负指数形式,表明电阻率增加,冲击系数减小;αl则表明几何尺寸增加,冲击系数也增加;αI表明冲击电流幅值增加,冲击系数减小。
下面根据模拟试验结果,给出各种接地装置的冲击系数的拟合计算公式。
1)铁塔接地装置为α=0.74ρ-0.4(7.0 )×[1.56-exp(-3.0Im-0.4)];2)水泥杆环形接地装置为α=2.94ρ-0.5(6.0 )×[1.23-exp(-2.0Im-0.3)];3)水泥杆放射型接地装置为α=1.36ρ-0.4(1.3 )×[1.55-exp(-4.0Im-0.4)];4)从一端施加冲击电流的水平接地体为α=1.62ρ-0.4(5.0 )×[0.79-exp(-2.3Im-0.2)];5)从中间施加冲击电流的水平接地体为α=1.16ρ-0.4(7.1 )×[0.78-exp(-2.3Im-0.2)];6)垂直接地体为α=2.75ρ-0.4(1.8 )×[0.75-exp(-1.50Im-0.2)].式中,ρ为土壤电阻率,单位为Ωm;l为几何尺寸,单位为m;Im为冲击电流幅值,单位为kA。2.2 冲击接地电阻的拟合计算公式对试验得到的冲击接地电阻的数据直接进行拟合,拟合得到的公式很复杂。由前面公式得到的冲击系数乘以工频接地电阻可得到冲击接地电阻。
采用规程[3]给出的水平接地装置工频接地电阻的计算公式形式为
根据模拟试验结果通过拟合得到铁塔接地装置、水泥杆环型接地装置、水泥杆放射型接地装置和水平接地体的形状系数A,分别为1.76,1.0,2.0和0(拟合得到水平接地体的形状系数接近规程提供的数值0,因此就取整)。
其中L为水平接地装置的接地体总长度,单位为m,对于铁塔接地装置:L=4S 4l,水泥杆放射型接地装置:L=d 4l,水泥杆环型接地装置,l=0时:L=8d,l不为0时,L=4l;D为接地导体直径,单位为mm;h为接地装置埋深,单位为m。3 结果比较运用上述关于冲击系数的计算公式可以方便地用于输电线路杆塔接地装置设计时估计其冲击接地电阻,增加设计的可靠性;另外也可以方便地根据接地装置工频接地电阻现场实测结果估计接地装置的冲击接地电阻。
采用本文的冲击系数的计算公式得出的结果与湖北中试所1960年11月至1961年7月的现场试验结果[4],以及刘继等[5]进行的现场实测结果进行了比较;另外也与规程所提供的冲击系数的计算公式的计算结果进行了比较,如表1所示。 表1 20m长的单根水平接地体在电阻率为1000Ω.m的土壤中冲击系数的比较
冲击电流/kA
文[5]现场
试验结果文[4]现场
试验结果接地规程
推荐值本文公式
计算结果
20.680.500.880.63
40.590.410.810.59
60.550.340.790.57
80.520.310.770.55
可以看出通过模拟试验得到的经验公式的计算结果与文献中的实测结果比较接近,与规程值相差较大。本研究的结果可以为修订规程时提供参考。
4 500kV铁塔接地装置冲击接地电阻的估算表2列出了500kV铁塔接地装置的基本数据,按本文研究结果可以提供与之相应的冲击接地电阻,也列在表中。
表2 500kV输电线路铁塔接地装置的冲击接地电阻
型号
土壤电阻
率/(Ωm)工频接地电
阻允许值/Ω射线长
度/m冲击接地电阻/Ω
20kA50kA100kA
TF330015211.810.910.3
TF550015137.456.936.53
TF10100020269.628.678.29
TF20200025508.057.667.18
可以根据得到的冲击接地电阻来分析线路的耐雷水平、雷击跳闸率等,从而使计算结果与实际情况更加接近;也可以根据计算结果和实际要求来改进接地装置的设计,以满足工程实际的要求。
5 结 论1)选择正确的冲击系数是输电线路防雷设计的关键。冲击系数随冲击电流幅值的增加而减小,具有饱和趋势;随几何尺寸的增加而增加,当接地体的几何尺寸达到一定值以后,冲击系数增加的速度变慢;冲击系数随土壤电阻率增加而减小。
2)通过对试验数据进行回归分析,得出了计算不同接地装置的冲击接地系数和工频接地电阻的经验公式。分析结果表明,模拟试验结果与文献中提供的现场实测结果吻合得较好。
3)采用推导的经验公式对常规设计的500kV铁塔接地装置的冲击接地电阻进行了估计,为进一步分析线路的耐雷水平等提供了便利的条件。第一作者:男,1966年生,副教授
*基金项目:国家“九五”重大科技攻关项目子课题(970048)
作者单位:何金良,曾 嵘,陈水明,李思芸,吴维韩
(清华大学电机工程与应用电子技术系,北京100084);
屠幼萍(华北电力大学(北京)电力工程系,北京100085);
孙为民(山东省电力工业局,济南250001)参考文献 [1]何金良,陈先禄.输电线路杆塔接地装置冲击特性的模拟原理.清华大学学报,1994,34(4):38~43
[2]何金良,曾 嵘,陈水明等.输电线路杆塔冲击接地电阻特性的模拟试验研究.清华大学学报,1999,39(5):5~8
[3]水利电力部.电力设备接地技术设计规程SDJ8-79.北京:水利电力出版社,1979
[4]刘 继,叶涟远,张学鹏,等.长效化学接地降阻剂接地体大电流冲击特性的研究.高电压技术,1981,(4):1~8
[5]文成,唐和生,阮仕荣.高电阻率土壤中接地体特性的试验.电力技术,1962,(9-10):30~41[1][2]下一页